{ "cells": [ { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "from model import *\n", "from similarity import *\n", "import csv" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "def create_similarity_matrix(filename, key):\n", " with open(filename) as file:\n", " similarity_matrix = {}\n", "\n", " for line in csv.DictReader(file, skipinitialspace=True):\n", " for k, v in line.items():\n", " if k == key:\n", " key_v = v\n", " similarity_matrix[key_v] = {}\n", " else:\n", " similarity_matrix[key_v][k] = float(v)\n", "\n", " return similarity_matrix" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "case_base = CaseBase.from_csv(\n", " \"data/SIM_001.csv\",\n", " problem_fields = (\"v\", \"v_left\", \"v_front\", \"d_left\", \"d_front\", \"type_left\", \"type_front\", \"radius_curve(m)\", \"slope_street\", \"street_type\", \"time\", \"weather\", \"type_vehicle\", \"speed_limit(km/h)\"),\n", " solution_fields = (\"action\"),\n", " encoding = \"utf-8\",\n", " delimiter = \";\",\n", " set_int = True\n", ")\n", "print(case_base)\n", "case_base[:3]" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "case_base.add_symbolic_sim(\n", " field = \"type_left\",\n", " similarity_matrix = create_similarity_matrix(\"data/vehicle_type_sim.csv\", \"type_vehicle\")\n", ")\n", "\n", "case_base.add_symbolic_sim(\n", " field = \"type_front\",\n", " similarity_matrix = create_similarity_matrix(\"data/vehicle_type_sim.csv\", \"type_vehicle\")\n", ")\n", "\n", "case_base.add_symbolic_sim(\n", " field = \"type_vehicle\",\n", " similarity_matrix = create_similarity_matrix(\"data/vehicle_type_sim.csv\", \"type_vehicle\")\n", ")\n", "\n", "case_base.add_symbolic_sim(\n", " field = \"slope_street\",\n", " similarity_matrix = create_similarity_matrix(\"data/street_slope_sim.csv\", \"type_street_slope\")\n", ")\n", "\n", "case_base.add_symbolic_sim(\n", " field = \"street_type\",\n", " similarity_matrix = create_similarity_matrix(\"data/street_type_sim.csv\", \"type_street\")\n", ")\n", "\n", "case_base.add_symbolic_sim(\n", " field = \"time\",\n", " similarity_matrix = create_similarity_matrix(\"data/time_type_sim.csv\", \"type_time\")\n", ")\n", "\n", "case_base.add_symbolic_sim(\n", " field = \"weather\",\n", " similarity_matrix = create_similarity_matrix(\"data/weather_type_sim.csv\", \"type_weather\")\n", ")\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "query = Query.from_problems(\n", " v = 28.5,\n", " v_left = 42.5,\n", " v_front = 5,\n", " d_left = -137,\n", " d_front = 54,\n", " type_left = \"motorcycle\",\n", " type_front = \"truck\",\n", " radius_curve = 2391,\n", " slope_street = \"flat\",\n", " street_type = \"country_road (separated)\",\n", " time = \"day\",\n", " weather = \"dry\",\n", " type_vehicle = \"car\",\n", " speed_limit = 100,\n", ")\n", "\n", "# sim_funcs: manhattan_sim, euclid_sim\n", "retrieved = case_base.retrieve(\n", " query,\n", " v_left = euclid_sim,\n", " v_front = euclid_sim,\n", " d_left = euclid_sim,\n", " d_front = euclid_sim,\n", " type_left = symbolic_sim,\n", " type_front = symbolic_sim,\n", " radius_curve = euclid_sim,\n", " slope_street = symbolic_sim,\n", " street_type = symbolic_sim,\n", " time = symbolic_sim,\n", " weather = symbolic_sim,\n", " type_vehicle = symbolic_sim,\n", " speed_limit = euclid_sim,\n", ")\n", "\n", "print(\"Your Query:\")\n", "for k, v in query.problem.items():\n", " print(f\" - {k} = {v}\")\n", "print()\n", "print(\"I recommend you this car:\")\n", "print(\" \".join(retrieved.solution.values()).capitalize())\n", "print()\n", "print(\"Explanation:\")\n", "for field, sim_val in retrieved.sim_per_field.items():\n", " print(f\" - {field} =\", retrieved.problem[field], f\"(similarity: {sim_val:.2f})\")" ] } ], "metadata": { "kernelspec": { "display_name": "venv", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.11.0" }, "orig_nbformat": 4, "vscode": { "interpreter": { "hash": "c6b11de3c41b7cafaa0ac1297b550056ae3875bbf0c337fa48ab4f33656fc527" } } }, "nbformat": 4, "nbformat_minor": 2 }