

 MOD Graphical User Interface | TINF18C | Team 3 | 06/05/2022

1

Moduldocumentation

(MOD)

(TINF20C, SWE I Praxisprojekt 2021/2022)

Modul

Controller

Project: Modelling Wizard for Devices

Customer: Rentschler & Holder

 Rotebühlplatz 41

 70178 Stuttgart

Supplier: by Lukas Ernst – Team 1

(Linus Eickhoff, Florian Kellermann, Lukas Ernst, Malte Horst, Florian Kaiser)

 Rotebühlplatz 41

 70178 Stuttgart

Version Date Author Comment

V0.1 07.09.2021 Lukas Ernst Created

V0.2 27.04.2022 Lukas Ernst Filled with information

V0.3 28.04.2022
Florian Keller-
mann

Improved information

V0.4 03.05.2022 Malte Horst Checked

V1.0 06.05.2022 Lukas Ernst Improved design

 MOD Graphical User Interface | TINF18C | Team 3 | 06/05/2022

2

Contents
1. Scope ... 3
2. Definitions ... 3
3. Module Requirements ... 4

 User View ... 4
 Requirements ... 4
 Module Context ... 4

4. Analysis .. 5
5. Design .. 5

 Risks ... 5
6. Implementation ... 6
7. Module Test ... 7

 Module Testplan .. 7
 Module Testreport ... 7

8. Summary .. 8
9. Appendix ... 8

 References ... 8
 Code .. 8

 MOD Graphical User Interface | TINF18C | Team 3 | 06/05/2022

3

1. Scope

This module documentation explains the Controller in more detail. It shows how the standalone appli-
cation is working in the backend for example how files are imported/exported and which features are
implemented. The individual functions are tested in advance and their results are documented here.
If there are existing problems, they are also listed here and possible solutions are explained in more
detail.

It can also serve as a programming guide, if further features should be implemented.

2. Definitions

GUI - Graphical User Interface
SRS - System Requirement Specification
STP - System Test Plan
STR - System Test Report
AMLX - AML Package
CAEX - Computer Aided Engineering Exchange
URI - Uniform Resource Identifier

 MOD Graphical User Interface | TINF18C | Team 3 | 06/05/2022

4

3. Module Requirements

 User View

This Module should provide the user the following features:

1. An opportunity to create a File

• Add Role Classes

• Add Interfaces

• Add Attachments
2. Export the created File
3. Import other Files
4. Load new Libraries

 Requirements

The following requirements are implemented by this module: /LF10/, /LF20/, /LF30/, /LF60/, /LF70/,
/LF80/, /LD10/, LD/20/.

/LF10/: The user now has the possibility to import files using an absolute path. In the beginning this
did not work anymore.

/LF20/, /LF30/: This requirement is about the AML Component Checker. The file is to be checked
against the AMLX standards. It is checked whether the structure of the file fits and whether all libraries
are present.

/LF60/: When the user is shown the attributes of a loaded device, he can edit any attribute he wants
to change.

/LF70/: When starting the application, the user can create a new, empty device model.

/LF80/: This requirement is about exporting the file in the correct CAEX version. In the previous project
this was version 3.0. Now you can choose between CAEX 2.15 and 3.0. CAEX is a neutral data format
for storing hierarchical object information. The versions differ in their standards. This requirement has
been implemented.

 Module Context

This module provides the backend of the Standalone application. It is responsible for ensuring that the
data in the graphical user interface is all correct and also that all the required data is in place. The data
entered is then processed by the controller and put into the correct structure. If any information for
creating an AMLX file is missing, the user will be informed about it via a specific error message. Images
are attached as an external file in the AMLX container. Interfaces, role class and all associated libraries
are stored in the root-aml file. Afterwards the file can be exported. The controller is also responsible
for allowing the import of AMLX files. If this is not possible the user will be informed.

 MOD Graphical User Interface | TINF18C | Team 3 | 06/05/2022

5

4. Analysis

The main task of the controller is the import and export of an AMLX file. The data for this is transmitted
from the graphical user interface to the controller. The controller must then process the data and then
create a root-aml file. When exporting, the following things must be taken into consideration: The
libraries must be exported, all data must be exported, so that there is no data loss and the data must
also be validated. When importing, it is important to be able to map the majority of all files. It is im-
portant that the libraries of a file are recognized and that it is included in the correct tab so that it can
be processed correctly. In addition, there must be no loss of data, which means that images and all
interfaces must also be imported correctly. If there are problems with the export, the user must be
informed. This is usually done via an error message from the user interface.

5. Design

There are three important functions of the module: Importing a file, exporting a file and validating the
data from the graphical user interface.

Validate data: The Validate Data must verify that all the data entered is correct. Thus, fields that are
mandatory must logically be filled in. If they are not, a corresponding error message must be issued.
In addition, it must be checked whether fields also have the correct data types. For example, a URI
must have a certain syntax to be considered valid. Attributes that are not present, i.e. that were addi-
tionally entered by the user, may not be transferred, because the libraries are responsible for providing
the attributes to the RoleClasses / Interfaces. If all data is correct and complete, the file can be ex-
ported.

Export: When exporting, you can choose between CAEX 2.15 an CAEX 3.0. Attachments, such as Com-
ponentIcons and ManufacturerIcons are then added to the container with reference to the image.
Once the export is complete, a confirmation message will appear.

Import: The import loads the file with the interfaces and libraries. The file is scanned for data and how
to classify it. For example, the BaseClass is loaded into the GenericData tab, the interfaces into the
Interfaces tab, and the attachments into the Attachments tab. Again, the data is checked to see if it
conforms to the standards. If there are complications during the import, an error message is displayed.

 Risks

The export is based on the libraries of CAEX. This decides the standard of the file and its structure. If
the CAEX version is no longer maintained and gets outdated, there could be complications with the
export. This danger is currently still quite small, since the newest standard is the version 3.0 and it was
also task to implement this. However, if there are problems with importing CAEX 3.0 files in future the
standalone application would be unusable.

Libraries are very important for import and export. If these are not available, it can happen that files
are not loaded correctly, or they are even no longer usable. In addition, it can happen that devices
cannot be created because certain libraries are missing.

 MOD Graphical User Interface | TINF18C | Team 3 | 06/05/2022

6

6. Implementation

The controller module contains a lot of different functions that allow to execute certain actions on
triggered events from the graphical user interface. However, these are not that important, so they will
not be discussed in detail. The most important functions are those that represent the main functions.

Data validation: “saveToolStripMenuItem_Click()” the most important data validation function is the
saveToolStripMenuItem_Click() function. This validates the data and checks if all necessary data is pre-
sent. If they are not present, a corresponding error message is output. If all data is correct, the data is
passed to the export function.

Export: “CreateDevice()” this function is responsible for converting the data into the correct data struc-
ture. In this function also for example URIs are converted into the correct data formats and images are
attached into the container. The export file starts first of all to read the libraries from the data and to
add them to the file. Then the generic data is inserted into the file. The name of the file is also taken
from the generic data (Device Name & Vendor Name). Afterwards all interfaces, which were inte-
grated, are attached to the file. If necessary, further libraries are included in the file. Finally, the other
attachments are appended. When the file is finished, it is saved in the specified path as an .amlx file.

Import: “openToolStripMenuItem_Click()” this function is responsible for importing files. First of all, it
checks if the file has the correct structure or if any data is corrupt. If this is the case, a corresponding
error message is returned. If the data is in the correct structure, the information is read from the file.
These are arranged directly by the function into the three tabs. This means that libraries are loaded
and can be seen on the right in the graphical interface, the base data in the generic data tab, the
interfaces in the interfaces tab and the attachments in the attachments tab.

 MOD Graphical User Interface | TINF18C | Team 3 | 06/05/2022

7

7. Module Test

In this section nearly all requirements will be tested separately on their functionality.

 Module Testplan

Req. - ID Functionality

LF10: Import Imports file by absolute path

LF20: File validation Checks whether input file is in a valid format

LF30: Error handling Application throws errors on expected shutdowns and wrong formatting

LF60: Edit device Every attribute of devices should be editable

LF70: Create device Creates a new and empty device

LF80: Export device Loaded device is saved as to file

 Module Testreport

Req. - ID Pass/ Fail When failed: Observation

LF10: Import Pass Linus Eickhoff

LF20: File validation Pass Linus Eickhoff

LF30: Error handling Pass Linus Eickhoff

LF60: Edit device Pass Malte Horst

LF70: Create device Pass Linus Eickhoff

LF80: Export device Fail File is saved and exported

correctly without errors when

creating a new de-vice. While

editing an ex-isting device,

exporting fails.

Florian Kaiser

 MOD Graphical User Interface | TINF18C | Team 3 | 06/05/2022

8

8. Summary

Most of the module requirements have been implemented successfully Both CAEX versions were im-
plemented, so it is possible to export the AMLX in this versions. Many bugs were found here as well,
which were also fixed. However, not all requirements were implemented, because the bug was not
found despite debugging for days. Also the import of foreign AMLX files, which have a different struc-
ture than the export structure of this standalone application, works to some extent. Further enhance-
ments were also implemented in this module to improve the usability of the program.

9. Appendix

 References

[1] System Requirements Specification: https://github.com/H4CK3R-01/TINF20C_ModellingWiz-
ard_Devices/wiki/1.-Software-Requirements--Specification
[2] Previous Project: https://github.com/DekaAthlos/TINF19C-ModellingWizard
[3] System Test Plan: https://github.com/H4CK3R-01/TINF20C_ModellingWizard_De-
vices/blob/47d2ba67fc73ebc080f303f0e29ca2260d8c7d88/PROJECT/STP/TINF20C_STP_Team_1.pdf
[4] System Test Report: https://github.com/H4CK3R-01/TINF20C_ModellingWizard_De-
vices/blob/47d2ba67fc73ebc080f303f0e29ca2260d8c7d88/PROJECT/STR/TINF20C_STR_Team_1.pdf

 Code

The source code for this module can be found at:
• https://github.com/H4CK3R-01/TINF20C_ModellingWizard_Devices/blob/app-source-

code/SOURCE/Plugin/MWData.cs

• https://github.com/H4CK3R-01/TINF20C_ModellingWizard_Devices/blob/app-source-
code/SOURCE/Plugin/DeviceDescription.cs

