

 SAS DD2AML Converter | TINF18C | Team 3 | 05/05/2022

1

System Architecture
Specification

(Architekturspezifikation)

(TINF20C, SWE I Praxisprojekt 2021/2022)

Project: Modelling Wizard for Devices

Customer: Rentschler & Holder

 Rotebühlplatz 41

 70178 Stuttgart

Supplier: by Lukas Ernst - Team 1

 (Linus Eickhoff, Florian Kellermann, Lukas Ernst, Malte Horst, Florian Kaiser)

 Rotebühlplatz 41

 70178 Stuttgart

Version Date Author Comment

V0.1 04.11.2021 Lukas Ernst created

V0.2 05.11.2021 Lukas Ernst Add introduction and glossary details

V0.3 07.11.2021 Lukas Ernst
Add runtime and non-runtime quality
goals

V0.4 10.11.2021 Lukas Ernst
Update quality concept and technical con-
cept

V0.5 12.11.2021 Lukas Ernst Update usability concept

V1.4 16.11.2021 Lukas Ernst Add last missing information

http://www.bredemeyer.com/papers.htm%20%0cInhalt
http://www.bredemeyer.com/papers.htm%20%0cInhalt

 SAS DD2AML Converter | TINF18C | Team 3 | 05/05/2022

2

Contents

1. Introduction ... 3

 Glossar ... 3

2. System Overview ... 4

 System Environment .. 4

 Software Environment .. 4

 Quality Goals ... 4

 Runtime Quality Attributs ... 4

 Non-Runtime quality attributes ... 5

3. Quality Concept .. 6

 Usability Concept ... 6

 Code Quality.. 7

4. Architectural Concept ... 8

 Architectural Model... 8

 Component Diagram ... 9

5. Systemdesign ... 10

6. Subsystem specification ... 13

 <MOD.001>: Graphical User Interface (GUI) 13

 <MOD.002>: Controller .. 13

 <MOD.003>: Runtime .. 13

7. Technical Concepts ... 14

 Persistence .. 14

 Communication with other IT-Systems 14

 Deployment ... 14

 Data validation .. 14

 Exception handling ... 14

 Internationalization .. 14

 Testability ... 14

8. Figures ... 15

http://www.bredemeyer.com/papers.htm%20%0cInhalt

 SAS DD2AML Converter | TINF18C | Team 3 | 05/05/2022

3

1. Introduction

The aim of this project is to program a standalone application for Windows based on a plugin
for the AutomationML editor. The graphical user interface should be improved and support
the modelling of sensors according to IEC 60947-5 should be offered. Furthermore, it should
be possible to create devices, add device interfaces and file attachments. It should also be
feasible to create a device manually, but also by reading in existing device description files
with the aid of the DD2AML converter. The output should be an AutomationML package that
complies with the rules for AML component models (AML-DDs). The programme is aimed at
an industrial user group, as it is suitable for creating models, which should help in the design
of systems.

 Glossar

AML Automation mark-up Language is an open standard data format for storing

and exchanging plant planning data.

AMLX AML Package to store also not AML files in one package.

CAX File format of AML Device files.

C# High level language often used for programming

GUI Graphical User Interface

.NET The .NET Framework is a software development and runtime environment de-

veloped by Microsoft for Microsoft Windows.

AML DD AML Device Description

GSD General Station Description, data format for Profibus and Profinet devices.

IODD IO Device Description describes the sensors and other participants in an IO-
Link network.

 SAS DD2AML Converter | TINF18C | Team 3 | 05/05/2022

4

2. System Overview

The system works as follows: The user should be able to run the former plugin directly on his
computer without the editor. For this purpose, a runtime is provided on which the plug-in
runs.

 System Environment

The standalone application can only be accessed via Windows, as this operating system is used
as the platform. The application can be installed and the graphical user interface can be used
via this platform. In contrast to old programme or the plug-in, the editor and the "IODD" and
the "GSD" converter no longer needs to be used.

 Software Environment

For the standalone application to work, you need at least version 4.5 of the .Net framework,
as C# was used developing it. This version of the framework is available from the "Windows
Vista" operating system variant onwards. You do not need any further software, as this is a
standalone application.

 Quality Goals

In order to achieve the quality goals, different criteria are considered.

 Runtime Quality Attributs

These can be observed at execution time of the system.

Usability

Usability is the most important aspect of the project besides the standalone application. To
this end, a graphical user interface was created that allows the user to use it as easily as pos-
sible. Intuitive operation is very important, but an appealing design is also necessary to create
the best possible user experience. This is the only way the application can successfully simplify
work processes.

Functionality

As the targets have been set relatively precisely, attention should be paid to their compliance
and fulfilment. Furthermore, care should be taken to process the functions according to their
importance, which means ensuring the standalone property first, then the usability and then
the remaining functions.

Performance

The problem with programmes that have been developed many times and then by different
teams is that they often have poor code quality and therefore a high RAM and memory load.
On technically older systems, this can lead to problems such as crashes or slow feedback. This
is also a problem of the plugin, there are single files with several thousand lines of code. So
we should at least try not to make this worse. If we have enough time, we should adapt the
code in general.

 SAS DD2AML Converter | TINF18C | Team 3 | 05/05/2022

5

Security

It must be ensured that it is recognisable where and from whom the programme originated.
It will not be possible to access the Internet with the programme, so confidentiality is auto-
matic.

Availability

The programme and its code will be available on GitHub on a public repository. This means
that anyone can access the programme at any time.

Interoperability

This is important because it must be ensured that users are not firmly bound to this standard
or programme. After all, the main users will come from the industry and therefore place a lot
of value on a uniform standard.

 Non-Runtime quality attributes

These cannnot be observed at execution time of the system.

Modifiability

Since the programme is open source and publicly viewable, it can be extended by anyone. This
is important if any use cases arise in the future.

Portability and reusability

Attention is paid to transferability to later projects, through the involvement and formation
of libraries and the like, but the application case is very specific and difficult to transfer to
other or new projects. Therefore not so important.

Testability

This is probably the second most important point after usability, care must be taken to ensure
that the code is testable. On the one hand directly in the code, but also testing the binary is
important. For this purpose, various test cases are described and worked through on the Sys-
temtestplan page. Also check the Systemtestreport to learn more about the test results. The
AML Component Checker should be validating all created AML files. Thereby, to keep quality
high, errors that cause undesirable behavior or even fatal errors must be eliminated.

 SAS DD2AML Converter | TINF18C | Team 3 | 05/05/2022

6

3. Quality Concept

This part of the software architecture specification explains and breaks down the problems
that usually arise during the further development of software. This includes concepts for deal-
ing with these problems and thus improving the quality of the final product.

 Usability Concept

The criteria for good usability are:

Intuitiveness: Intuitiveness is a key component of good usability which means that the user
understands the application without a long training period. This point is also interesting for
companies, as they then do not have to train their employees for so long. This is to be achieved
by having important things at the top and not hidden in a drop-down selection. Furthermore,
the design must be adopted from other well-known programmes.

Design: When designing the application, an appealing layout is important. It should be clearly
recognisable which function is hidden behind which visual elements and how the user can
navigate through the app. It probably makes sense to be inspired by the design of the Auto-
mationML editor, because then the switch to this programme would not be so difficult.

Recognition value: This means that similar functions should be realized with the same se-
quences. This makes it easier for the user to find his way around the functions and increases
user friendliness. For example, when creating models or a wizard that guides you through the
creation.

Colour scheme: A good colouration can be created by an attractive choice of colours and their
coordinated contrasts. At the moment, matte colours are more in vogue and are preferred for
designs. Many people find these more pleasant.

Implementation guideline:

After conducting the usability test, guidelines were developed on the basis of which the GUI
improvements will be made. Therefore, the GUI must meet the following guidelines:

• A consistent colour palette should be used, where elements with the same events have
the same colours for recognition. Matte and colour-coordinated palettes should be
used here.

• Contrasts, borders as well as roundings should be used to emphasise inputs or inter-
action fields. Blank areas should be created to give an attractive and uncluttered de-
sign. Another advantage is that the user will then find his way around more easily. The
layout of the GUI should be independent from the style of the AML editor, as this is no
longer up to date.

• The design and layout should be self-explanatory and reinforce the previous point to
allow intuitive use.

 SAS DD2AML Converter | TINF18C | Team 3 | 05/05/2022

7

Based on the criteria just defined and the guidelines developed, the graphic interface is
adapted and optimised. Functionality is very important but should not negatively affect usa-
bility. Nevertheless, compromises have to be made in terms of feasibility, as the basic concept
of AutomationML should be presupposed.

 Code Quality

Code quality is one of the most important aspects when it comes to software that is being
developed further and may come from different developers. For this reason, we have made it
our mission to address and improve the problem of code quality. To maintain a certain stand-
ard, we have agreed on certain conventions:

• Commenting on sections of code that are not clearly understandable in order to ex-
plain the implemented idea to others

• Programming paradigms and programming principles that make the code easy to un-
derstand, such as one main function per file and a sensible folder structure.

This means that the code is indented uniformly to improve readability and comprehension.
Furthermore, the program is divided into modules that can then be imported and used. Oth-
erwise, you run the risk of having to write duplicate code. In addition, it is our responsibility
to write documentation that records which ideas have been implemented and how, so that
the existing functions are easier to understand for future developments and can be built upon.

 SAS DD2AML Converter | TINF18C | Team 3 | 05/05/2022

8

4. Architectural Concept

The system will be based on earlier efforts by a team of students who developed something
very similar, namely a plugin for the AutomationML editor.

 Architectural Model

The application was designed and developed according to a Model-View-Control (MVC) archi-
tecture pattern that resembles a cycle. The user can use the application by accessing the GUI.
However, the actions he performs in the GUI are not processed in the GUI but in the controller
and its subclasses. The controller executes the changes in the background, these are also
called manipulations. Afterwards, the changes are updated on the user interface so that the
user thinks that the changes were made directly in the GUI (cf. Figure 1).

Figure 1 – MVC Architecture

Almost all the logic is contained in the controller, which thus forms the centre of the entire
system architecture and contains the functionalities. There is basically only one layer that is
accessible to the user, the GUI.

 SAS DD2AML Converter | TINF18C | Team 3 | 05/05/2022

9

 Component Diagram

The controller is the main control unit from the plug-in. It is responsible for communicating
with the user interface and the external systems that are added for conversions. This interface
is the heart of the entire application and is responsible for the functionalities, but also for the
integration of additional functions such as saving or loading AMLX packages from the Auto-
mationML Engine. Thus, the concept builds on that of the plug-in, making it easier to adapt
functions and ideas. The change is that it will be a standalone application. This is ensured by
integrating the AutomationML engine and the plug-in into a new programme via an import.
The plugin is then started in its own view, so that the old code of the plugin is retained.

Figure 2 - Logic of the plugin

In the figure above, you can see the new architecture design that depicts the structure of the
standalone application (cf. Figure 2). As you can see in the illustration, the user only interacts
with the graphical user interface. This then passes the input from the user to the controller
and the controller displays the information in the GUI. The controller processes the requests
with the help of the AutomationML engine, but not all functions were mapped for this because
there would be too many. For example, it can be used to save and load models in AML format.
To be able to process IODD and GSD model formats, the programme needs converters. These
work with two interfaces and return an AutomationML file. However, due to the further de-
velopment based on the project, the architecture became more and more unstructured and
complex. As a result, MVC is no longer used as intended. This was further complicated by the
use of a Microsoft Forms application. Ultimately, as can be seen in Figure 4 and 5, the archi-
tecture became increasingly unstructured and complex.

 SAS DD2AML Converter | TINF18C | Team 3 | 05/05/2022

10

5. Systemdesign

The idea of making the plugin a standalone application is to run the plugin on another pro-
gramme that provides the appropriate dependencies. This gives the impression of running the
plugin directly (cf. Figure 3).

Figure 3 - Programme Concept

The advantage of this solution is that the code of the plug-in remains largely intact. This makes
it easier to adopt the ideas and insights of the old team. The programme on which the plug-in
runs is shown in figure 4.

Figure 4 - Class design from the main application

 SAS DD2AML Converter | TINF18C | Team 3 | 05/05/2022

11

Figure 6 - MVC pattern

The "Program" field in the diagram is supposed to represent an executable file; if you click on
it, "Form1" is called. This function then loads the "ModellingWizard", i.e. the plugin. This
means that the GUI of the plugin is then displayed in "Form1".

Figure 5 - Class design from the Modelling Wizard

The current design of the plugin has changed a little, but not much (cf.
Figure 5). The concept of the plugin and most of the code was taken
over from the old project.

Still the MVC pattern is a small part of the whole system design (cf.
Figure 6). In this case the InputFromUser is obviously the user input.
DeviceDesc (standing for Device Description), due to its two different
C# program files, once maps the GUI and once the controller.
DataMW is the class that takes care of the data management and cre-
ates an object of the type MWData, which can then export, store and
process through the controller. The source code is located in the
"main" branch under the "Source" folder.

 SAS DD2AML Converter | TINF18C | Team 3 | 05/05/2022

12

Classname Storage location

About https://github.com/H4CK3R-01/TINF20C_ModellingWizard_De-
vices/blob/main/SOURCE/Plugin/About.xaml.cs

AnimationClass https://github.com/H4CK3R-01/TINF20C_ModellingWizard_De-
vices/blob/main/SOURCE/Plugin/AnimationClass.cs

Automa-
tionMLDataTables

https://github.com/H4CK3R-01/TINF20C_ModellingWizard_De-
vices/blob/main/SOURCE/Plugin/AutomationMLDataTables.cs

ClassOfListFrom-
ReferenceFile

https://github.com/H4CK3R-01/TINF20C_ModellingWizard_De-
vices/blob/main/SOURCE/Plugin/ClassOfListsFromReferencefile.cs

DeviceDescription GUI: https://github.com/H4CK3R-01/TINF20C_ModellingWizard_De-

vices/blob/main/SOURCE/Plugin/DeviceDescription.Designer.cs

Logic: https://github.com/H4CK3R-01/TINF20C_ModellingWiz-

ard_Devices/blob/main/SOURCE/Plugin/DeviceDescription.cs

ModellingWizard https://github.com/H4CK3R-01/TINF20C_ModellingWizard_De-

vices/blob/main/SOURCE/Plugin/ModellingWizard.xaml.cs

MWController https://github.com/H4CK3R-01/TINF20C_ModellingWizard_De-

vices/blob/main/SOURCE/Plugin/MWController.cs

MWData https://github.com/H4CK3R-01/TINF20C_ModellingWizard_De-

vices/blob/main/SOURCE/Plugin/MWData.cs

MWDevice https://github.com/H4CK3R-01/TINF20C_ModellingWizard_De-

vices/blob/main/SOURCE/Plugin/MWDevice.cs

Resources https://github.com/H4CK3R-01/TINF20C_ModellingWizard_De-

vices/tree/main/SOURCE/Plugin/Resources

SearchAMLCom-
ponentFile

https://github.com/H4CK3R-01/TINF20C_ModellingWizard_De-

vices/blob/main/SOURCE/Plugin/SearchAMLComponentFile.cs

SearchAMLLi-
braryFile

https://github.com/H4CK3R-01/TINF20C_ModellingWizard_De-

vices/blob/main/SOURCE/Plugin/SearchAMLLibraryFile.cs

https://github.com/H4CK3R-01/TINF20C_ModellingWizard_Devices/blob/app-source-code/SOURCE/Plugin/About.xaml.cs
https://github.com/H4CK3R-01/TINF20C_ModellingWizard_Devices/blob/app-source-code/SOURCE/Plugin/About.xaml.cs
https://github.com/H4CK3R-01/TINF20C_ModellingWizard_Devices/blob/app-source-code/SOURCE/Plugin/AnimationClass.cs
https://github.com/H4CK3R-01/TINF20C_ModellingWizard_Devices/blob/app-source-code/SOURCE/Plugin/AnimationClass.cs
https://github.com/H4CK3R-01/TINF20C_ModellingWizard_Devices/blob/app-source-code/SOURCE/Plugin/AutomationMLDataTables.cs
https://github.com/H4CK3R-01/TINF20C_ModellingWizard_Devices/blob/app-source-code/SOURCE/Plugin/AutomationMLDataTables.cs
https://github.com/H4CK3R-01/TINF20C_ModellingWizard_Devices/blob/app-source-code/SOURCE/Plugin/ClassOfListsFromReferencefile.cs
https://github.com/H4CK3R-01/TINF20C_ModellingWizard_Devices/blob/app-source-code/SOURCE/Plugin/ClassOfListsFromReferencefile.cs
https://github.com/H4CK3R-01/TINF20C_ModellingWizard_Devices/blob/app-source-code/SOURCE/Plugin/DeviceDescription.Designer.cs
https://github.com/H4CK3R-01/TINF20C_ModellingWizard_Devices/blob/app-source-code/SOURCE/Plugin/DeviceDescription.Designer.cs
https://github.com/H4CK3R-01/TINF20C_ModellingWizard_Devices/blob/app-source-code/SOURCE/Plugin/DeviceDescription.cs
https://github.com/H4CK3R-01/TINF20C_ModellingWizard_Devices/blob/app-source-code/SOURCE/Plugin/DeviceDescription.cs
https://github.com/H4CK3R-01/TINF20C_ModellingWizard_Devices/blob/app-source-code/SOURCE/Plugin/ModellingWizard.xaml.cs
https://github.com/H4CK3R-01/TINF20C_ModellingWizard_Devices/blob/app-source-code/SOURCE/Plugin/ModellingWizard.xaml.cs
https://github.com/H4CK3R-01/TINF20C_ModellingWizard_Devices/blob/app-source-code/SOURCE/Plugin/MWController.cs
https://github.com/H4CK3R-01/TINF20C_ModellingWizard_Devices/blob/app-source-code/SOURCE/Plugin/MWController.cs
https://github.com/H4CK3R-01/TINF20C_ModellingWizard_Devices/blob/app-source-code/SOURCE/Plugin/MWData.cs
https://github.com/H4CK3R-01/TINF20C_ModellingWizard_Devices/blob/app-source-code/SOURCE/Plugin/MWData.cs
https://github.com/H4CK3R-01/TINF20C_ModellingWizard_Devices/blob/app-source-code/SOURCE/Plugin/MWDevice.cs
https://github.com/H4CK3R-01/TINF20C_ModellingWizard_Devices/blob/app-source-code/SOURCE/Plugin/MWDevice.cs
https://github.com/H4CK3R-01/TINF20C_ModellingWizard_Devices/tree/app-source-code/SOURCE/Plugin/Resources
https://github.com/H4CK3R-01/TINF20C_ModellingWizard_Devices/tree/app-source-code/SOURCE/Plugin/Resources
https://github.com/H4CK3R-01/TINF20C_ModellingWizard_Devices/blob/app-source-code/SOURCE/Plugin/SearchAMLComponentFile.cs
https://github.com/H4CK3R-01/TINF20C_ModellingWizard_Devices/blob/app-source-code/SOURCE/Plugin/SearchAMLComponentFile.cs
https://github.com/H4CK3R-01/TINF20C_ModellingWizard_Devices/blob/app-source-code/SOURCE/Plugin/SearchAMLLibraryFile.cs
https://github.com/H4CK3R-01/TINF20C_ModellingWizard_Devices/blob/app-source-code/SOURCE/Plugin/SearchAMLLibraryFile.cs

 SAS DD2AML Converter | TINF18C | Team 3 | 05/05/2022

13

6. Subsystem specification

All modules have no external data.

 <MOD.001>: Graphical User Interface (GUI)

<MOD.001> Graphical User Interface

System require-
ments covered:

/LF10/, /LF30/, /LF40/, /LF50/, /LF60/, /LF70/, /LF80/, /LD20/

Service: The graphical user interface is taking input from the user and sending it
to the controller by calling event functions.

Interfaces: ---

Storage loca-
tion:

https://github.com/H4CK3R-01/TINF20C_ModellingWizard_De-

vices/blob/main/SOURCE/Plugin/DeviceDescription.Designer.cs

Modul docu-
mentation:

https://github.com/H4CK3R-01/TINF20C_ModellingWizard_De-

vices/wiki/MOD.001:-Graphical-User-Interface-(GUI)

 <MOD.002>: Controller

<MOD.002> Controller

System require-
ments covered:

/LF10/, /LF20/, /LF30/, /LF60/, /LF70/, /LF80/, /LD10/, /LD20/

Service: Logic distribution is handled by the controller. It is reacting to the events
triggered by the GUI and takes care of creating the respective objects.
Also the input and output functions are implemented in the controller.

Interfaces: Interface of AMLX packages. For export/import of amlx files there is the
MWData class.

Storage loca-
tion:

https://github.com/H4CK3R-01/TINF20C_ModellingWizard_De-

vices/blob/main/SOURCE/Plugin/DeviceDescription.cs

Modul docu-
mentation:

https://github.com/H4CK3R-01/TINF20C_ModellingWizard_De-

vices/wiki/MOD.002:-Controller

 <MOD.003>: Runtime

<MOD.003>: Runtime

System requirements
covered:

/LF40/

Service: This part of the programme turns the plug-in into a standalone ap-
plication. The goal is that it has the same feature set as the Auto-
mationML editor on which the plugin runs.

Interfaces: ---

Storage location: https://github.com/H4CK3R-01/TINF20C_ModellingWizard_De-
vices/blob/main/SOURCE/Application/Program.cs

Module documenta-
tion

https://github.com/H4CK3R-01/TINF20C_ModellingWizard_De-
vices/wiki/MOD.003:-Runtime

https://github.com/H4CK3R-01/TINF20C_ModellingWizard_Devices/blob/app-source-code/SOURCE/Plugin/DeviceDescription.Designer.cs
https://github.com/H4CK3R-01/TINF20C_ModellingWizard_Devices/blob/app-source-code/SOURCE/Plugin/DeviceDescription.Designer.cs
https://github.com/H4CK3R-01/TINF20C_ModellingWizard_Devices/wiki/MOD.001:-Graphical-User-Interface-(GUI)
https://github.com/H4CK3R-01/TINF20C_ModellingWizard_Devices/wiki/MOD.001:-Graphical-User-Interface-(GUI)
https://github.com/H4CK3R-01/TINF20C_ModellingWizard_Devices/blob/app-source-code/SOURCE/Plugin/DeviceDescription.cs
https://github.com/H4CK3R-01/TINF20C_ModellingWizard_Devices/blob/app-source-code/SOURCE/Plugin/DeviceDescription.cs
https://github.com/H4CK3R-01/TINF20C_ModellingWizard_Devices/wiki/MOD.002:-Controller
https://github.com/H4CK3R-01/TINF20C_ModellingWizard_Devices/wiki/MOD.002:-Controller
https://github.com/H4CK3R-01/TINF20C_ModellingWizard_Devices/blob/app-source-code/SOURCE/Application/Program.cs
https://github.com/H4CK3R-01/TINF20C_ModellingWizard_Devices/blob/app-source-code/SOURCE/Application/Program.cs
https://github.com/H4CK3R-01/TINF20C_ModellingWizard_Devices/wiki/MOD.003:-Runtime
https://github.com/H4CK3R-01/TINF20C_ModellingWizard_Devices/wiki/MOD.003:-Runtime

 SAS DD2AML Converter | TINF18C | Team 3 | 05/05/2022

14

7. Technical Concepts

 Persistence

By using the publicly available "AMLX" package standard, the system becomes persistent.
This means that created or edited models can be reopened and edited in the AutomationML
Editor. This function is particularly important in an international and industrial environment.
Therefore, "IODD" and "GSD" files can also be converted.

 Communication with other IT-Systems

The plug-in already had the problem that it was dependent on external programmes. Thus,
"IODD" and "GSD" programme types had to be converted in order to be able to use them. The
goal will now be to implement these programmes or converters directly in the standalone
application. The advantage of this is that the user does not have to install external dependen-
cies that may also cause errors. This means that, in the best case, there would only be inter-
action with the file system.

 Deployment

To make changes to the application, Visual Studio 2019 must first be installed. In "Visual Stu-
dio 2019", the file "Application.sln" from the "Application" folder must then be opened. The
application and the plug-in (ModellingWizard) are then visible in the Solution view. In order
to be able to compile the application, the "AML.Engine" package in version 1.5.8 may have
to be installed via the "NuGet" package manager.

 Data validation

All data checks are running in the background, invisible for the user. The controller is checking
for missing information and incorrect entries, that must be specified as mandatory infor-
mation for example before a conversion can take place, the input file (GSM, IODD and CSP+)
needs to be vali-dated to ensure a conversion is possible.

 Exception handling

Exception handling is necessary to prevent errors caused by the user while using the program.
So called "try-catch" blocks are used to 'catch' these and prevent unwanted or incorrect be-
havior of the software. This way, the user is informed about what did not work and he/she
may be able to fix the problem or at least report it to the developers.

 Internationalization

The whole system layout can be used for international purposes since the user manual and
over all GUI is written in English and English is defined to be the international traffic language.
On the other hand, there is no way to change the language so English is a mandatory
knowledge for using the program.

 Testability

The software is composed of different modules. These modules are tested separately. To re-
ceive an overview about the system tests the system test plan provides more information and
the system test report contains all the results.

 SAS DD2AML Converter | TINF18C | Team 3 | 05/05/2022

15

8. Figures

Figure 1 – MVC Architecture .. 8

Figure 2 - Logic of the plugin .. 9

Figure 3 - Programme Concept .. 10

Figure 4 - Class design from the main application ... 10

Figure 5 - Class design from the Modelling Wizard ... 11

Figure 6 - MVC pattern ... 11

file:///C:/Users/Lukas_Ernst/Downloads/TINF18C_SAS_Team_3_v1.0.docx%23_Toc102130531

