177 lines
5.2 KiB
Plaintext
177 lines
5.2 KiB
Plaintext
{
|
|
"cells": [
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"from model import *\n",
|
|
"from similarity import *\n",
|
|
"import csv"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"def create_similarity_matrix(filename, key):\n",
|
|
" with open(filename) as file:\n",
|
|
" similarity_matrix = {}\n",
|
|
"\n",
|
|
" for line in csv.DictReader(file, skipinitialspace=True):\n",
|
|
" for k, v in line.items():\n",
|
|
" if k == key:\n",
|
|
" key_v = v\n",
|
|
" similarity_matrix[key_v] = {}\n",
|
|
" else:\n",
|
|
" similarity_matrix[key_v][k] = float(v)\n",
|
|
"\n",
|
|
" return similarity_matrix"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"case_base = CaseBase.from_csv(\n",
|
|
" \"data/SIM_001.csv\",\n",
|
|
" problem_fields = (\"v\", \"v_left\", \"v_front\", \"d_left\", \"d_front\", \"type_left\", \"type_front\", \"radius_curve(m)\", \"slope_street\", \"street_type\", \"time\", \"weather\", \"type_vehicle\", \"speed_limit(km/h)\"),\n",
|
|
" solution_fields = (\"action\"),\n",
|
|
" encoding = \"utf-8\",\n",
|
|
" delimiter = \";\",\n",
|
|
" set_int = True\n",
|
|
")\n",
|
|
"print(case_base)\n",
|
|
"case_base[:3]"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"case_base.add_symbolic_sim(\n",
|
|
" field = \"type_left\",\n",
|
|
" similarity_matrix = create_similarity_matrix(\"data/vehicle_type_sim.csv\", \"type_vehicle\")\n",
|
|
")\n",
|
|
"\n",
|
|
"case_base.add_symbolic_sim(\n",
|
|
" field = \"type_front\",\n",
|
|
" similarity_matrix = create_similarity_matrix(\"data/vehicle_type_sim.csv\", \"type_vehicle\")\n",
|
|
")\n",
|
|
"\n",
|
|
"case_base.add_symbolic_sim(\n",
|
|
" field = \"type_vehicle\",\n",
|
|
" similarity_matrix = create_similarity_matrix(\"data/vehicle_type_sim.csv\", \"type_vehicle\")\n",
|
|
")\n",
|
|
"\n",
|
|
"case_base.add_symbolic_sim(\n",
|
|
" field = \"slope_street\",\n",
|
|
" similarity_matrix = create_similarity_matrix(\"data/street_slope_sim.csv\", \"type_street_slope\")\n",
|
|
")\n",
|
|
"\n",
|
|
"case_base.add_symbolic_sim(\n",
|
|
" field = \"street_type\",\n",
|
|
" similarity_matrix = create_similarity_matrix(\"data/street_type_sim.csv\", \"type_street\")\n",
|
|
")\n",
|
|
"\n",
|
|
"case_base.add_symbolic_sim(\n",
|
|
" field = \"time\",\n",
|
|
" similarity_matrix = create_similarity_matrix(\"data/time_type_sim.csv\", \"type_time\")\n",
|
|
")\n",
|
|
"\n",
|
|
"case_base.add_symbolic_sim(\n",
|
|
" field = \"weather\",\n",
|
|
" similarity_matrix = create_similarity_matrix(\"data/weather_type_sim.csv\", \"type_weather\")\n",
|
|
")\n"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"query = Query.from_problems(\n",
|
|
" v = 28.5,\n",
|
|
" v_left = 42.5,\n",
|
|
" v_front = 5,\n",
|
|
" d_left = -137,\n",
|
|
" d_front = 54,\n",
|
|
" type_left = \"motorcycle\",\n",
|
|
" type_front = \"truck\",\n",
|
|
" radius_curve = 2391,\n",
|
|
" slope_street = \"flat\",\n",
|
|
" street_type = \"country_road (separated)\",\n",
|
|
" time = \"day\",\n",
|
|
" weather = \"dry\",\n",
|
|
" type_vehicle = \"car\",\n",
|
|
" speed_limit = 100,\n",
|
|
")\n",
|
|
"\n",
|
|
"# sim_funcs: manhattan_sim, euclid_sim\n",
|
|
"retrieved = case_base.retrieve(\n",
|
|
" query,\n",
|
|
" v_left = euclid_sim,\n",
|
|
" v_front = euclid_sim,\n",
|
|
" d_left = euclid_sim,\n",
|
|
" d_front = euclid_sim,\n",
|
|
" type_left = symbolic_sim,\n",
|
|
" type_front = symbolic_sim,\n",
|
|
" radius_curve = euclid_sim,\n",
|
|
" slope_street = symbolic_sim,\n",
|
|
" street_type = symbolic_sim,\n",
|
|
" time = symbolic_sim,\n",
|
|
" weather = symbolic_sim,\n",
|
|
" type_vehicle = symbolic_sim,\n",
|
|
" speed_limit = euclid_sim,\n",
|
|
")\n",
|
|
"\n",
|
|
"print(\"Your Query:\")\n",
|
|
"for k, v in query.problem.items():\n",
|
|
" print(f\" - {k} = {v}\")\n",
|
|
"print()\n",
|
|
"print(\"I recommend you this car:\")\n",
|
|
"print(\" \".join(retrieved.solution.values()).capitalize())\n",
|
|
"print()\n",
|
|
"print(\"Explanation:\")\n",
|
|
"for field, sim_val in retrieved.sim_per_field.items():\n",
|
|
" print(f\" - {field} =\", retrieved.problem[field], f\"(similarity: {sim_val:.2f})\")"
|
|
]
|
|
}
|
|
],
|
|
"metadata": {
|
|
"kernelspec": {
|
|
"display_name": "venv",
|
|
"language": "python",
|
|
"name": "python3"
|
|
},
|
|
"language_info": {
|
|
"codemirror_mode": {
|
|
"name": "ipython",
|
|
"version": 3
|
|
},
|
|
"file_extension": ".py",
|
|
"mimetype": "text/x-python",
|
|
"name": "python",
|
|
"nbconvert_exporter": "python",
|
|
"pygments_lexer": "ipython3",
|
|
"version": "3.11.0"
|
|
},
|
|
"orig_nbformat": 4,
|
|
"vscode": {
|
|
"interpreter": {
|
|
"hash": "c6b11de3c41b7cafaa0ac1297b550056ae3875bbf0c337fa48ab4f33656fc527"
|
|
}
|
|
}
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 2
|
|
}
|